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The motion of a system consisting of a gyrostat and an elastic rod in a circular Kepler orbit in a central Newtonian force field 
is considered in a restricted formulation. The gyrostat is treated as a rigid body in which there is a dynamically rotating flywheel 
and a statically counterbalanced flywheel. The uniform elastic rod, which is rectilinear in the undeformed state, is rigidly fixed 
to the gyrostat housing at one end. The axis of the undeformed rod is arbitrarily located in the principal plane of inertia of the 
gyrostat. The relative displacements of the points of the system as a result of a small deformation of its elastic link are represented 
in the form of an infinite series of its expansion (without its a priori truncation) in a specified system of functions, which depend 
on the spatial coordinates, with unknown time-dependent coefficients. The orientation of the system for an attracting centre is 
defined by indicating the position with respect to the associated system of coordinates of the unit vectors of the normal to the 
plane of the orbit and the radius vector or transversal of the orbit at the centre of mass of the system. Here, these two unit vectors 
are located in the principal central plane of inertia of the gyrostat, containing the axis of the undeformed rod. The deformations 
of the rod, which naturally depend on the orientation and the gyrostatic moment which ensures equilibrium of the chosen 
orientation (non-trivial equilibrium since, in this case, generally speaking, the rod is deformed), and its stability in the Lyapunov 
sense are determined for the two single parameter families of uniaxial orientations of the system to an attracting centre which 
have been separated out in this way. © 2005 Elsevier Ltd. All rights reserved. 

The problem of the steady motions of a gyrostat [1, 2], which is treated here as a rigid body with a rotating 
statically counterbalanced flywheel and a dynamically rotating flywheel positioned in it is customarily 
separated into a direct and an inverse problem. In the direct problem (the problem of analysis) it is 
necessary to find the steady motions (the equilibria, in particular) for a given gyrostatic moment of the 
system. In the inverse formulation (the problem of synthesis) the gyrostatic moment which ensures the 
chosen steady motion of the system is sought. 

For a gyrostat in a circular Kepler orbit in the direct formulation, an analytical solution of the problem 
is only known for the case when the vector of the gyrostatic moment of the system is located in a particular 
principal centre plane (see [3], for example). In the general case of the location of the flywheel, results 
are available based on numerical calculations (see [4, 5], for example) but this important and extensive 
class of investigations of the problem is not discussed any further. Results are more abundant for the 
inverse formulation of the problem [5-8]. In the last of these papers, in particular, the accepted 
classification of the relative equilibria of a gyrostat in a circular orbit is presented. It should be noted 
that the solution of the problem of the possibility, because of the choice of the gyrostatic moment of 
the system, of ensuring a relative equilibrium for which an arbitrarily specified axis, fixed in the main 
body of the gyrostat relative to the orbital system of coordinates, coincides, in the case of an arbitrary 
form of the determined axis, with a fixed axis relative to the orbital system of coordinates, is successfully 
reduced to finding the real root of the corresponding fourth-order algebraic equation. However, the 
conditions, relating the parameters of the system and which guarantee the existence of such a solution 
have not been given in the literature. 

tPrikL Mat. Mekh. Vol. 68, No. 6, pp. 971-983, 2004. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2004.11.009 
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Research which has been published on the above-mentioned problems for a gyrostat with an elastic 
element is not very extensive and is concerned with the trivial equilibria of a system when its elastic 
element has not been deformed (see [9], for example). 

1. F O R M U L A T I O N  OF THE P R O B L E M .  THE I N T E G R A L S  OF M O T I O N  

We will consider, in a restricted formulation [1 = 0], the motion of a mechanical system, consisting of 
a gyrostat and an elastic rod, in a circular Kepler orbit in a central Newtonian force field. The gyrostat 
is treated as a rigid body in which there is a dynamically rotating flywheel and a statically counterbalanced 
flywheel. A uniform elastic rod, which is rectilinear in the undeformed state, is rigidly fixed in the gyrostat 
housing at one end. The axis of the undeformed rod is arbitrarily located in the principal central plane 
of inertia of the gyrostat. As the system moves, its instantaneous centre of mass is displaced in a circular 
Kepler orbit around the centre of attraction and the rod undergoes small spatial flexural oscillations. 

The purpose of this paper is to show that, in the case of this system, non-trivial families of relative 
equilibria of the second and third classes [8] exist, and to point out the conditions for their Lyapunov 
stability. 

Only right-handed systems of Cartesian coordinates are introduced to describe the motion. The system 
of coordinates Oyk (k = 1, 2, 3) is introduced with a pole O at the instantaneous centre of mass and 
the unit vectors of the axes oL, 13, ~/respectively; the unit vector 13 is directed along the normal to the 
orbital plane and ~/is directed along the radius vector of the instantaneous centre of mass relative to 
the attracting centre. The constant angular velocity vector of the rotation of the orbital system of 
coordinates with respect to inertial space o~ = o~13, m > 0, R is the radius of the circular orbit of the 
motion of the centre of mass O, L is the characteristic size of the system and rn is its mass. The system 
of coordinates 01x k with the unit vectors of the axes ik (k = 1, 2, 3) is rigidly fixed to the housing of the 
gyrostat, O1 is the centre of mass of the undeformed system while the coordinate axes coincide with 
the principal central axes of the gyrostat, and f~ is the angular velocity vector of the trihedron OlXk with 
respect to Oyk. 

Suppose the axis of the elastic rod, which is rectilinear in the undeformed state and, for simplicity, 
of constant circular cross-section and unit length, is located in the plane 01x2x3, P is the mass per unit 
length of the rod, a is the distance from the point O1 to the point where the rod is fastened, and the 
parameter s e [0, 1] defines a point on the axis of the rod. We will assume that, as the rod moves, it 
suffers small spatial flexural deformations in accordance with Kirchhoff's hypotheses: the cross-sections 
of the rod are not deformed, and their twisting and the change in the normal of the transverse cross- 
section relative to the normal of the same cross-section in the undeformed position of the rod are 
neglected. 

The points of the gyrostat occupy a bounded domain vl while the points of the undeformed elastic 
link occupy the bounded domain v2, F is the common boundary of the domains, dimF ¢ 0, and 
v = vl + a)2 [11]. 

In order to describe the deformations of the elastic link of the system, we use a local system of 
coordinates with unit vectors {fk}; the unit vector f3 is located along the axis of the undeformed rod 
which passes through the point O1 and is directed from it. The radius vector of an arbitrary point of 
the rod, which, prior to deformation, is defined with respect to the point O1 by the vector r, will be 
defined after deformation with respect to the instantaneous centre of mass of the system O by the 
expression (r + u(t, s) - r0), where u(t, s) is the vector of the elastic displacement of the points of the 
rod axis and r0 = m-II01pu(t, s)ds is the radius vector of the point O with respect to the point O1. We 
shall henceforth neglect the quantity r 0, that is, it is assumed that the points O1 and O coincide. 

We will now formulate the assumptions employed in this paper. 
1. We will represent the vector of the elastic displacement of the rod axis as follows: 

(2) (2) 
u( t ,s)  = • (q;')Z(')(s)f, + qp Xp (s)f2) = Z ~]n(t);n(S) (1.1) 

p=O n = l  

where 

- ~ ) ( s ) f ¢  Zt2p+i(t ) = qp'(i) Ip2p+i(s) = )C P = O, 1, ...; i = 1, 2 

Note that the generalized coordinates 02k - 1(0 define elastic displacements along the axis fl while 
02k(t) define elastic displacements along the axis f2 (k = 1, 2, ...) lying in the plane 01x2x3. Functions 
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of the parameter s satisfying the corresponding boundary conditions (one end of the rod is rigidly 
clamped and the other is free) are represented and follows: 

Xn_I(S ) = ~(nl) l(S) ---. Z~2) I(S) _-- ((sh~, + sinfJ,)(ch~lnS-COS~nS ) -  
(1.2) 

- ( ch 13. + cos ]3 n) ( sh 13.s - sin ~lns) )/( sin 13. ch 13 n - cos 13n sh 13.) 

The quantities ~n (n = 1, 2 . . . .  ) are the roots of the equation cosl3 chl3 + 1 = 0 for which the functions 
are normalized such that 

1 

f p ) ~ n ( S ) ) ~ p ( s ) d s  = Mn~)np, M n = 1 

o 

2. The potential energy of small elastic deformations is defined by the expression 

1 ~ ~ 2 2 Elf3~ (1.3) 
[I  = ~ £ {npOnZlp, Cnp = A n M n S n p  , A n - P 

n,p = 1 

where An(Mn) is the frequency (reduced mass) corresponding to the mode Zn-ffs), and Elis the stiffness 
of the rod. It is clear that A1 < A2 < ... and it is also natural to assume that the potential energy of the 

1/2 elastic deformations remains bounded. If the new variables qn(t) =- (Cnn) ~n(t) and, correspondingly, 
~,(s)  -- (G,)-laqS~(s) are introduced, we conclude from the boundedness of the energy that q(t) =- 
(qb q2 . . . .  ) belongs to the Hilbert space 12 of infinite sequences which are bounded with respect to the 
norm 

M = [q,12 
1 

It should be noted that A1 > 1 and, as has been shown in [14], {A~ l} • la. Consequently, {An z} • /2 .  
3. Neglecting quantities of the order of (L/R) 3 and higher, we use the following approximate expression 
for the potential energy of the gravitational forces 

Hg - gmR + ~ ~°2(3"/J¥- trJ) (1.4) 

Here ~t is the product of the gravitational constant and the mass of the attracting centre and J is the 
inertia tensor of the system with respect to the instantaneous centre of mass. 

In accordance with representation (1.1) 

I ( ( r  + u ) 2 E  - ( r  + u) : (r  + u))dm = J(q)  
I )  

oo (1.5) 

= Jo + ~ q,(t)Jn + ~ qnqpJ,, 
n=l  n , p = l  

where J0 is the inertial tensor of the undeformed system with respect to the point O, E is a 3 x 3 unit 
matrix and a colon denotes a dyadic product of vectors. We will represent the matrices of the components 
of the tensors J0, Jn, Jnp in the local system of coordinates {fk} 

[ J0]F  = 1111 Jo 0 0 0 0 0 

22 23 [Jzk]F = Jk 0 0 --I 0 J0 J0 ' 
23 33 0 - -1  0 

0 Jo J0 

i oo111 iooo [ J 2 k - l ] F  = Jk 0 0 0 , [ J2k- l ,  2/~-l]F = Jkk 0 1 0 

- 1 0  0 0 0 1  (1.6) 
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i 0 I [J2k, 2k - l lF  = [ J 2 k - l , 2 k ]  = Jkk  --1 0 

0 0 

1 1 

Jk -=Ip(a+  s)tpkds, Jkt ~ Iptp2k ds, k = 1, 2 . . . . .  

o o 

We will assume that, when rotated by an angle A about the Olxa axis, the principal axes of inertia of 
the gyrostat without the rod with respect to the point O1 transfer respectively into axes with unit vectors 
{fi}, (i = 1, 2, 3). Then 

11 K 22 K K K . 2 12 13 
Jo = I + I  o Jo = 12 + ( 1 3 - 1 2 ) s l n  A, J0 = J0 = 0  

(a.7) 
33 K 3 K K . 2 23 = (1 K tK)sinAcosA, Jo Jo - = 13 + I c - ( l  3 -12)sm A 

1 

Ic -- ~ P (a + s)Zds and 13 is the moment of inertia of the undeformed rod about the axis 01xl and its 

own °ndeformed axis respectively; here, the quantities I f  ( are the moments of inertia of the gyrostat 
housing about the axes 01xj (j  = 1, 2, 3). Note that all the other matrices of the components [Jz~- 1 p]V 
and [Jz~ p]F are zero matrices by virtue of the properties of the functions {Z,} (k, p, n = 1, 2, . . .). '  
4. The central ellipsoid of inertia of the gyrostat and of the whole of the undeformed system is not an 
ellipsoid of revolution; similar assumptions have previously been used in [12-15]. 

It is well known (see [9], for example) that the equations of motion (various methods for obtaining 
these in the case of complex mechanical systems have been discussed in [15]) in the case being considered 
here, admit of, in addition to integrals of the direction cosines Ui (i = 1, 2, 3), an integral of the Jacobi 
type U. We have 

U I - y y - 1  = 0, U2-=[III -1  = 0, U3--y[$ = 0 

(1.8) 
U =- T r + 1-1 + H g  - ~ t o J t o  - t o k  = const 

Here  k is the constant gyrostatic moment  of the system, and the kinetic energy is defined by the 
expression 

1 
T r --- ~ J ~  + ~ZG + ~ ~ anmOnqm 

n , m =  | 

1 
where anm = S p g~n~ornds and the angular momentum vector with respect to the point 0 has the form 

0 
o o  

G -= I (r  + u ) x  fidm = ~.. Gngl. + ~ ,  glnqpGnp 
u2 n=l n,p=l 

The expressions for Gn and Gnp as well as the equations of motion of the system with respect to its 
instantaneous centre of mass O are not presented here (see [15], for example). A partial derivative with 
respect to time is denoted by a dot. 

2. F A M I L I E S  OF E Q U I L I B R I A  

In order to find the relative equilibria of the system and investigate their stability, we make us of the 
Routh-Lyapunov theorem [16, 11, 14] which is contained within the framework of the direct Lyapunov 
method [17-19]. We include the functionals V and 1/1 using the formulae 

1 ) 1 2  3 2  
Vl(y, [~, q, ~L, ~, v) = 13 + Fig - ~o~J~ - kto + 3~2~LU3 + ~01 vU 2 - ~¢0 o U  1 

V(~ ,q ,y , [~ ,q ,~ . ,G ,v )  = T r + V  l 
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where ~, a and v are undetermined Lagrange multipliers and the quantity in brackets on the right-hand 
side of the expression for V1 is called the change in the potential energy. The derivative of the functional 
Vwith respective to time, that is, of the bunch of integrals of motion, is equal to zero. 

Suppose the variables with a circumflex determine a certain unperturbed motion of the system (relative 
equilibrium when ~ = 0,Tg/" = 0) and we denote small perturbations of the corresponding quantities 
by gD, ~) = (~301 , ~ q 2 ,  . . - )  , 6q = (Sql  , 8q2 , . . . ) r ,  ~3', 813. In a small neighbourhood of the unperturbed 
motion 

W= W(*) - V(O) = 6V(O) + 62V(0) + Q(O) 

where V(*) and other quantities with the argument (*) are the values of the functional V and of the 
other quantities for the unperturbed motion, V(O), 8V(O), 82V(0) are the values of the functional Vand 
its first and second variations and so on, calculated for the unperturbed motion of the system, and Q(O) 
is a functional containing quantities of no less than the third order in the perturbations. If the 
unperturbed motion of the system is a relative equilibrium and it is precisely such equilibria that we 
shall consider below, it is possible to write the following equality 

W -  V(*) - V ( O )  = T r ( *  ) + VI(* ) - Tr(0 ) - Vl(0 ) = Tr(* ) + 8V1(0 ) + ~)2Vj(O) + Q(O) (2.1) 

Under  corresponding conditions [11] (in the case of a gyrostat with an elastic rod, for example when 
q(t) ~ 12, q(t) ~ 12, {A~ 1} ~ 12 and an orthonormalized system of functions {Zn} [14], it can be shown 
that 

(  qnl 3 c r > 0  : Tr> c r ~ + .2 

The equations for finding the relative equilibria of the system and the undetermined Lagrange 
multipliers, which are written from the condition 6V(0) = 0 (rV(0) = 8Vl(0) when 1"~ = 0, q" = 0), can 
be expressed as follows: 

= : t s ( , i ) : t ,  : - I b ( o ) : t ,  : 0 (2.2) 

(vE-J(0)) I~  + 3 ~ - r l  = 0¢=> v =  I~J(0)I~ + 1~I1, otJ(0)l~ : - r l ~ ,  ~J(0)[~ : -11~/4 (2.3) 

The notation 

On + 2 ^ ~ ^ ^ , ^ (3rj.(q)r- t j.(q) - : o, 

11 = 0 ) - l k '  J'n = Jn+2~" .@Jnp 
p = l  

n = 1, 2 . . . .  (2.4) 

is used here. 
By direct calculations using expressions (1.6) and the properties of the system of functions {Zn(S)}, 

we find that Eqs (2.2)-(2.4) admit of two single-parameter families of solutions, that is, of relative 
equilibria of a gyrostat with an elastic rod, which determine the corresponding non-trivial equilibrium 
orientations of the system to the attracting centre. 

The first family (equilibria of the second class in accordance with the well-known classification 
[3, 8]) is characterized by the fact that the straight line, lying in the Oxax3 plane and making an angle 
O1 (the parameter of the family) with the unit vector %, is directed towards the attracting centre. In 
projections onto the {fk} axes, this family is defined by the following equations (k = 1, 2 . . . .  ) 

~l = +1, dc 2 = 0, &3 = 0; [~l = 0, ~2 = cosO1, [~3 = sinO1 (2.5) 

~1 = O, ~2 = -6qsinOl,  "~3 = I ~ I C O S O I  

2 . 1 
O) S l n O 1  C O S O  1 e 

- z-'-Y~-z.- . - - T ~ .  2 Jp(a  + S)XkdS (2.6) g/2k i = 0, 02k = 2 [ l + 0 ~ A k  ( 1 - 4 s i n  O1)]Ak0 
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Note that the denominator of the fraction does not vanish on account of the smallness of m and 
A k > 1, and that {qzk} e 12 if {A{ 1} E l 2. Actually, on taking account of the properties of A k and {Zk} 
from equalities (2.6) we derive the simple estimates 

I< 1 < ~-~--2._ p(a  + s) ds px~ds = 
2(I - 3m A 1 )Ak\ o 2(A~ - 3m2)Ak lc 

/ 2 . 2 -,2 oo 

q2k < ~ 2 Ic ~ Ak 
k = 1 /'~1~1 k = 1 

We assume here that the condition imposed on the lowest frequency: A} > 3m 2, which is often cited in 
papers on the stability of complex mechanical systems [9], is satisfied. 

For this family of equilibria, the matrix of the components of the inertia tensor of the system has the 
form 

[ J ( q ) ] F  = ( j F ( ~ ) )  = 

11 
Jo + Z 1  0 0 

22 23 
0 Jo Jo - ~ 2  

23 33 
0 J o  - 2 2  Jo  + Z I  

(2.7) 

where 

1 ^2 . ^2 . 
= Z  q2kJkk' Z 2  =--Z q2kJk 

k k 

Obviously, the axes with the unit vectors {ek}, el = fl in which the matrix [J(q)]E = (Jff) is diagonal 
aresimply determined. Naturally, it is necessary in this case to convert the components of the vectors 
or, [3, ~, using the corresponding transformation matrix. 

In accordance with formulae (2.2), the undetermined Lagrange multipliers are expressed in the form 

F F - ^ F 2 
~ . (0)  = &l (J22 - J33)  s tool  c°sO1 - ~ 1 J 2 3 ( c o s  1~1 - sin2Ol) 

(2.8) 
(3(0)  F • 2 F • F 2 

= J z 2 s l n  O 1 - 2 J z 3 s l n O l c o s O  1 + J 3 3 c o s  O 1 

In this case, as is also typical for the inverse problem of the equilibrium of a gyrostat without an elastic 
element, the parameter v remains undetermined since the gyrostatic moment and, more precisely, its 
projection onto the normal to the orbital plane, has not been fixed (see (2.3)). Below, we shall make 
use of the choice of v in order to ensure the stability of the equilibria of a gyrostat with an elastic rod. 

The components of the vector of the gyrostatic moment k in the axes {fk} for realizing the equilibria 
(2.5), (2.6) taking account of expressions (2.8) must be determined by the following equalities which 
are obtained from Eqs (2.3) 

k I 0, ~0qk2 (v F ^ ^ F ^ . = = - J 2 2 ( q ) ) e o s O  1 - (3~,oq + J 2 3 ( q ) ) s l n O l  
(2.9) 

mqk3 (3£~  t F ^ F ^ . = - J 3 3 ( q ) )  s t o o l  J 2 3 ( q ) ) c o s O 1  + ( v -  

The second single parameter family (equilibria of the third class in accordance with the well-known 
classification [3, 8]) is characterized by the fact that the OXl axis is directed towards the attracting centre 
(or from it) and, at the same time, the normal to the orbital plane makes an angle 02 (the parameter 
of the family) with the unit vector f2. In the axes {fk}, this family of equilibria is defined by the equations 

"~1 = + l ,  "~2 = 0 ,  ~t 3 = 0 ;  ~1 = 0,  ~2 = COSO 2, ~3 = sinO2 
(2.10) 

1~1 = 0 ,  ~2 = "~lsinO2, &3 = -'~lCOSO2 

2 . 
s l n O 2 c o s 0 2  1 

q 2 k - I  = 0 ,  q2k = [ l+6d2A;2(2+cos202)]A,  p(a+s)zkds; k 1,2 . . . .  
(2.11) 
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The components of the inertia tensor of the system with respect to the axes {fk} will, as previously, be 
given by formula (2.7), but taking Eqs (2.10) and (2.11) into account. In this case, the undetermined 
Lagrange multipliers have the form 

£(0) = O, ~(0) = J~(O) (2.12) 

Conclusions, similar to those above, hold with regard to the multiplier v which is determined in 
accordance with the equalities (2.3) and (2.10)-(2.12). The components of the vector of the gyrostatic 
moment of the system in the axes {fk} which ensures the equilibria (2.10), (2.11) are given by equalities 
which follow from expressions (2.3) 

k 1 0 ,  to - lk2  ( v  F ^ F ^ • = = -- J 2 2 ( q ) )  c o s ~ )  2 - J 2 3 ( q ) s l n O  2 

F ^ 
(o - lk3  = - J 2 3 ( q )  cos  0 2 + ( v  - J F 3 ( 0 )  ) sinO2 

(2.13) 

The estimates 

102kl < + ,)ztas <- ,¢0'  .,,2 < - , c "  
A t A l 

t k 

hold for the values of (2.11) 

3.  S T A B I L I T Y  O F  T H E  F A M I L I E S  O F  E Q U I L I B R I A  

The conditions for the stability of the families of equilibria of the system which have been found in 
accordance with the Routh-Lyapunov theorem and the method for finding the minimum of a functional 
W will be obtained as conditions for the second variation of the functional V1 (see (2.1)), calculated 
for the corresponding equilibria, to be positive definite. We now introduce the quantities 

W1 =- ~ /1 '  W2 ~ ~[~1' W3 -= ~]t2, W4 ~- 8~2'  W5 ~ 8~t3, W6 "~ 81~3 

W = (W 1 . . . . .  W6), 8q = (Sql . . . . .  8qn . . . .  ) 

We assume that (w, N/) e 12, and we represent the second variation as follows [14]: 

II a Bll w, q, 52V1(0) = to2(w, 8q) B r c  

where, subject to the condition that the corresponding tensors and vectors are given by their own 
components in the axes {fk}, the matrixA -= (Aij) ( i , j  = 1 . . . .  ,6;  k = 1, 2, 3) only has the following 
non-zero components 

A 2 k -  1, 2k-  I = 3 ( J k  F - 13 (0 ) ) ,  A2k, 2k = (V - Jk F) 

A12 = A21 = A34 = A43 = A56 = A65 = 3£(0) 
F 

A35 = 3JF3 = A53' A46 = J23 = A64 

The matrix B has six infinite r o w s  bi =- (bi l ,  bi2, . . . )  (i = 1, . . . ,  6; k , p  = 1, 2, ...), the elements of which 
are determined using the formulae (taking into account that 42k- 1 = 0) 

t 12 ,11 b3,2k_lH = 3 ( J 2 k _  1 + ~[2k,J2k_l, 2k)~, 
b 5, 2k -/llU 

l b2 2 ,lj 
b4, 2k-  1[[ = - ( J 2 k  - l  + q 2 k J 2 k -  l, 2k) 1~; 

b6, 2k - Ill 11 

l ; O, 1 (3.1) 
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The matrix C, with which we shall also identify a linear operator C, defined in 12, with values, generally 
speaking, in the space S of infinite sequences, is, in this case, a partitioned diagonal matrix (with 2 × 2 
blocks) 

C = diag(C l ,C  2 . . . .  ), C k = (C~) 

C~i = o-2+3~[J2k_2+i, 2k_2+i¥_trJ2k_2+i, 2k_2+i_~J2k_2+i,2k_2+i~ 

Cl 2k = C2 ~k = (3~j,k_l. ,2kY^-trJ2k-l ,2k-~J2k-l ,2k~)/2;  i , j  = 1,2; k = 1,2,.. .  

It should also be kept in mind that linear relations, arising from the conditions 5U~(0) = 0 
(i = 1, 2, 3), are imposed on the quantities w and, in fact 

S O l ( 0  )~-~tlW 1 +~2w3 5--~3w5 = 0, ~U2(0  ) ~ l W  25- ~2w 4 +  ~3w 6 = 0 

~U3(0 )  ~ ~lW 1 5- "~lW2 5- ~2w 3 5- ~/2w4 5- ~3w 5 5- ~3w6 -- 0 

The elements of the matrix C are given by the expressions (k = 1, 2 . . . .  ): 
for the family of equilibria (2.5)-(2.9) 

k -2 k k k -2 2 4cos201 Cll  : {1} , C12 :-- C21 = 0, C22 = co + Ak ( - 3 )  

(3.2) 

and for the family of equilibria (2.10)-(2.13), (2.7) 

k -2 2, k k k -2 2C0S2~2 Ci1 = 0) -3A~ C12 = C21 = 0, C22 : co 5-A k 

It clearly follows from the above expressions that the condition for the matrix C to be positive definite 
reduce to the condition A 2 > 302, and it is possible to write 

2 2 3 e c > 0 : A l > 3 o  + e  c, q C q r > e c [ [ q [ [ 2 ~ 3 C  -1, [[C-t[[<ec l (3.3) 

The implication in expression (3.3) is true by virtue of the well-known theorem of analysis concerning 
an inverse operator (see [20], for example). In this case, it is possible to give an explicit representation 

1 T ,  2 1/2 for C- (subject to the condition that A1 > 3c0 ) and it is possible to determine C- but only an estimate 
of the norm [1C -1 [[ is used in the following discussion. Now, when conditions (3.3) are satisfied, the 
following expression holds 

O}-2~2VL(0) = w( A - a-zBC -1BT)w r + (1 - ez)~)qC~)q r + 

+ (e-2wBC -1 + 5q)e2C(Sq  r + a-2C -l Brw r) 

This is easily verified by direct calculation in the case of arbitrary e e (0, 1). It can be seen that 
2 the conditions for ~ Va(0) to be positive definite can be obtained as conditions for a quadratic form 

with a matrix (A - e-2B C-1B T) to be positive definite when the linear relations (3.2) exist. 
We will now introduce the quantities 

di j -  e - 2 b i C - I  T T -1 ~ - I / 2 _ T  bj = d d j, d i = e c oi;  i , j  = 1 . . . . .  6 

for which the following limits exist 

Id01 - e-Zec'llb,llllbAI 

Using the Cauchy-Bunyakovskii inequality, it can be shown that {b i} ~ 12 when {A~ 1 } e l 2. 
Depending on the choice of the system of coordinates, the expressions for df,  as well for b i (see 

(3.1)), will change. Generally speaking, the system of coordinates (the axes {eZ} as or {fk}) using which 
dij, bi etc. are calculated, and it is important to note this, will be indicated with the corresponding 

F E superscript d o or b i , etc. This conversion is also used in the case of the parameters for the families of 
equilibria O1 and O2. Note that the expressions for the elements of the matrix C do not change with 
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the choice of the axes and, when the axes {%} are used, there will naturally be zero elements among 
the elements of the matrixA = (Ag)'Ag. = A.E~ = O,A~6 = A f4  = O, unlike the values of these elements 
when the axes {f~} are used (see above). 

Omitting the lengthy intermediate calculations in accordance with the method for investigating that 
the quadratic form of a finite number of variables is positive definite when there are linear relations 
which, in the case under consideration, leads to requirements that the corresponding determinants of 
the seventh, eighth and ninth orders [19, 21] (A7(0)  > 0, AS(0 ) > 0, z~9(0 ) > 0) are positive, we formulate 
an assertion concerning the stability of the non-trivial, single-parameter families of equilibria which 
have been found. 

Assertion 1. It is sufficient to satisfy the following conditions for the family (2.5)-(2.9) of uniaxial, non- 
trivial orientations of a gyrostat with an elastic rod toward an attracting centre to be stable. 

A~>3ol 2, {An 1}~12 (3.4) 

E . 6 .  2 ~ E  .E 2 ~ E  1 E ¢=>3(J~1 ~ )  E 
J l l > 1 2 2 s l n  t.7) 1 +133c0s  to 1 - g d l l  - - d l l > O  (3.5) 

> j E  . ~ E  2 , . E  . g E  2 E E 2 E ^E 2 
V 33(]J2) -l-d22(IJ3 ) - 3 ( J 3 3 - ( Y ) ( ~ 2 )  - 3 ( J 2 2 - ( Y ) ( ] I 3 )  + 

E ^E E ~E E ^E 2 E E 
4- (d f6~2  E 4- dls~t2 - d14[~ 3 - d1373 ) / ( 3 ( J .  - ~)  - d11) 

(3.6) 

V > V 2 (3.7) 

where v 2 is the larger root of the quadratic equation in v which is obtained from the condition that 
A9(0 ) = 0 (the expression for v2 is not written out because of its length). 

Note that conditions (3.50 and (3.6) are more rigorous compared with the analogous conditions which 
are used for a mechanical system which has "solidified" in the equilibrium being considered, on account 
of the existence of the term dll -> 0 and, correspondingly, on account of the presence of a non-negative 

1 last term in inequality (3.6). Condition (3.5), which is independent of the parameter v - 13J(0)13 + co- k13, 

is clearly not satisfied i f J ~  = m~nJ~ in the case of the equilibrium orientation being considered, that 

is, if the ellipsoid of inertia of the system in equilibrium with the major axis is directed along the tangent 
to the orbit. However, this condition can be satisfied by an appropriate choice of the moments of inertia 
of the gyrostat. In fact, the following chain of inequalities can be shown to hold on the basis of formulae 
(2.6)-(2.8), the Cauchy-  Bunyakovskii inequality and the estimate for dll 

e d f l / 3  > - - J22sln(91 + 2J23sm(gl c°s(91 - J33 c°s (91 - 0 ¢:* 

g X .  2 ( l f _ I f ) c o s 2 O l +  ¢:,(i1 _i2)sl  n O1 + (i3 x_  K . • 12)smAsm(A + 2(91) + 

+ ( Ip(a  + s)2ds)cos2(91 + sin (91 q2klp~p~ds - 

I 2)sm (91+ ( I f -  K • . 13 )cos (91 + - 12 ) smAsln(A + 2(91) - 

- - + s )  d s ~ . , ~ o ~ k d s - d ,  d 3 ~  
k k 

of Z0L . . . . .  3£ E c A 1 2..,q2~ > O 
k k k 
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In the last inequality, we assume that IX > I f  > I~m, l, m = 2, 3; l * m and, taking into account the 
estimate for Z 0  2 ,  we conclude that it and, consequently, inequality (3.5) are satisfied if 

f 2, 2 -,2 / 
-2 -1 . [  01 A1 | 

I K - - I K > I f - - I K +  ( l + 3 e  ~C)I  ,--U'--- 2I +1 IcZA-k  2 
(2(A 1-301 )J .' k 

(3.8) 

It is clear from this that, in order for conditions (3.5) to be satisfied, it is sufficient that the difference 
between the larger and average moments of inertia of the gyrostat should be greater than the difference 
between its average and the smaller moment of inertia by an amount which is determined by the second 
term on the right-hand side of inequality (3.8). This amount depends on the geometric, mass and stiffness 
characteristics of the elastic rod. If the inequality IX > I f  > IKm is _taken into account, it follows from 
expression (3.8) that the smaller moment of inertia of the gyrostat IKm is also greater than the difference 
between its average and smaller moments of inertia by the same amount. 

It can be shown that condition (3.5) is satisfied when Jf l  • e = mid Jii  if the vector ~ is such that the 
i 

vector j1/2~? lies in the "interior" of the domain between circular cross-sections of the central gyrational 
ellipsoid (constructed for the e, quilibrium of the system being considered) containing its minor axis 
( J ~  J~2 ~ J~3). In the "interior means that the length of the vector j1/2"9, the end of which is situated 
on the surface if the above-mentioned ellipsoid, is smaller than the quantity (Jig1 -d1~/3), which obviously 
must be greater than Ji~. The gyrational ellipsoid of the system is linked to its ellipsoid of inertia [22]. 
Here  and henceforth, 

E = midjE¢:, E e e Jll , Ju < Jll < Jkk({ l, k} = {2, 3 }, l ;~ k) 
i 

Assertion 2. The family (2.10)-(2.13), (2.7) of uniaxial, non-trivial orientations of a gyrostat with an 
elastic rod toward an attracting centre will be stable if 

2 A1>301 2, {Anl}~ 12 (3.9) 

I~=3(jE3 ^E 2 E ^E 2 . .E^E --E^E. 2 ~ E 
- C ) ( a 3 )  +3(J22-Cy)((x2)  - ( a s a  3 - a 3 a 2 )  >0, ¢~ = Jll  (3.1o) 

.E .^E.2  .E .^E.2 E ^ E  d E ~ E  2 
V>J33~O~3) +J221,~2) + ( d 4 ~ 3 +  6152) -t- 

. ,E ^Ep, E ,E ^E#,E ,E ^Ep, E _ E  ^ E ~ E  2 
+ (tl560~3 p2 -- a34(X21~3 -- a450~3113 + a36~ 2152 ) [1) 

(3.11) 

v > v 2 (3.12) 

where v 2 is the larger root of the quadratic equation in v obtained from the corresponding condition 
A9(0 ) = 0. 

Arguments similar to those presented earlier in [19, p. 271] and based on the methods of the theory 
of bifurcations hold with respect to the existence of real roots vl --- v2 of the equation A9(0 ) = 0. 
Conditions (3.10) and (3.11) are more rigorous than the analogous conditions which can be obtained 
for a gyrostat without an elastic element which, as regards its inertia characteristics, is equivalent to 
the system under investigation which has been "solidified" in the corresponding equilibrium. Inequality 
(3.1) is obviously not satisfied if J~l = m.axJff, that is, when the minor axis of the central ellipsoid of 

inertia of the system, constructed for the e~tuilibrium being considered, is located along the radius vector 
of the orbit (along the unit vector ~). Condition (3.10) can be satisfied when JIE1 = mid Jff, if & is such 

that the vector  j1/2ot, the end of which is located on the surface of the central gyrational ellipsoid of 
the system in the equilibrium being considered, lies in the "interior" of the domain between the circular 
cross-sections containing the major axis of the above-mentioned ellipsoid. In this case, in the "interior" 

1/2 E E E E E means that the length of the vector J & is greater than the quantity Jl l  + (ds&3 - d 3 & 2 ) / 3  which, in 
its turn, must be smaller than m a x J  if, otherwise condition (3.10) is not satisfied for any values of &. 

L 

By reasoning in a similar manner to that above in obtaining expression (3.8), it can be shown that 
condition (3.10) is satisfied regardless of the value of the parameter of the family ®2 and the deformations 
of the rod for an appropriate choice of the moments of inertia of the gyrostat. 
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